Définitions
Opérations sur les vecteurs

VECTEURS Coordonnées d’un vecteur

1) Définitions

Y pr mgs —»direction
Définition
Jg  Définition ~ :

Un vecteur u est caractérisé par sa direction, sons sens et ™ sens

sa longueur, appelée norme de u et notée ||u|l . u longueur

Un vecteur U peut étre défini par deux points A et B, tels que
A soit 'image de B par la translation de vecteur u . )

.

0 appelé vecteur nul, n’a ni direction, ni sens et une longueur nulle.

Définition
L'opposé d’un vecteur u , hoté ~u estle vecteur qui a u
méme direction et méme longueur que u , mais un —Uu

sens oppose a celuide u

Deux vecteurs sont égaux s’ils ont méme direction, méme sens et méme longueur.

B Tous les vecteurs représentés sont

€gaux :
AB
U
u=v=AB=CD
A D
Y 5%

(Car ils ont tous méme direction, méme
CD sens et méme longueur.
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-
Soient quatre po_igts A_lB CetD.

Les vecteurs ABetCD sont égatﬁg si et seulement si ABDC est un parallélogramme.
AB
A B

—_—

CD (attention a I'ordre : ABDC)
\& P )

démonstration : voir exercice

2) Opérations sur les vecteurs

Définition : Addition de vecteurs

La somme de deux vecteurs u et v estle vecteur associé a la translation résultant de
I‘'enchainement de la translation de vecteur u suivie de la translation de vecteur v
Onnotecevecteur: u+v

Exemple : Pour additionner les vecteurs u , vetw , on les dispose bout a bout et on « relie »
le tout début de Ila fin :

-
fEcE

Propriété : Relation de Chasles \
C

Soient trois points A, B et C.
Alorsona: AB+BC=AC AC L
BC
A B
AB

g J
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Propriété
— ~

Soient trois vecteurs u,vetw ,ona:
° _li + _\; = _\; + G (_Qn dit que I'addition des vecteurs est commutative)
. _lJ+ 0= G (on dit que O est élément neutre pour I'addition des vecteurs )
k ° G + (_\;+ V) = (G +V) + _\; (on dit que I'addition des vecteurs est associative))

Propriété : Regle du parallélogramme \

Soit ABCD un parallélogramme.
Alors : AB+AD=AC . AC
AD

. B )

démonstration : voir exercice

Définition : Multiplication d’un vecteur par un réel

Soient u un vecteur et un réel k #0.
ku estle vecteur ayant méme direction et méme longueur que u et

* demémesens que u si k>0.

e desens contrarea u si k<0.

u
Qa: OG:E) et k6:6 2u )

Propriété

Pour tous vecteurs U et v ettous réels k et k' :
e k(u+v)=ku+kv * (k+k')u=ku+k'u
o k(k'u):(kk')u

Propriété

Soigun vecteurs U et un réels k. Alors :
ku=0 < k=0 ouu=0
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Définition : Vecteurs colinéaires ~N

Deux vecteurs u et v non nuls sont colinéaires s’il existe un réel k non nul tel que :
u=kv ou v=ku.

( uetv ontméme direction )

. v,

Propriété : Parallélisme

Soient A, B, C et D quatre points distincts du plan. Les droites (AB) et (CD) sont paralléles
si et seulement si les vecteurs AB et CD sont colinéaires.

Propriété : Points alignés

Soient A, B et C trois points distincts du plan. L L
Les points A, B et C sont alignés si et seulement si les vecteurs AB et AC sont colinéaires.

2) Coordonnées d’un vecteur

Définition : Repére orthonormé

Un repére orthonormé du plan est un triplet (O ; i ; J) ou O, appelé origine du repere, \
est un pointdu planet i et j sontdeux vecteurs non colinéaires.

(le couple (lj) est appelé base ).

—_—

*  Pour tout pothou peut écrire  OM = XI+yj ouxetysont UNIQUES.
 Pour tout vecteur u ou peut écrire u= XI+yj ou x ety sont UNIQUES.

Propriété
( _ i . )

Pour tous vecteurs u(x,y)etv(x',y') dans un repére orthonormé (O;i;j) et
tout réel k :

. (x,y)=v(x',y') sietseulementsi x=x ety=y.
(x,y)+v(x',y') apourcoordonnées (x+Xx ,y+Yy ).
\ . u(x,y) apourcoordonnées (kx,ky) .

X Ccici
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.
Soient deux points A (xa, ya) et B (xs, ys ) dans un repére orthonormé (O; i j) :
Alors , les coordonnées de  AB sont AB(Xg—X,,Yg—Yp) -

( coordonnées du 2°™ point — coordonnées du 1" point ).

G J

Propriété : Critéere de colinéarité

Deux vecteurs U(x,y)etv(x',y') (non nuls)dans un repére orthonormé (O; i J) sont

colinéaires si et seulement s'il existe un réel k (non nul) tel que :
x=k x et y=ky.

démonstration : voir exercice

Remarque : Critére de colinéarité qui sera vu plus tard dans le programme : .
Deux vecteurs u(x,y)etv(x',y') (non nuls) dans un repére orthonormé (O;i;j) sont

colinéaires si et seulementsi xy —yx =0.
démonstration : voir exercice
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1) Définitions







  Définition       direction

         

Un vecteur est caractérisé par sa direction, sons sens et  sens

sa longueur, appelée norme de formule et notée .  formule  longueur

  

Un vecteur formulepeut être défini par deux points A et B, tels que 

A soit l’image de B par la translation de vecteur formule.  



formuleappelé vecteur nul, n’a ni direction, ni sens et une longueur nulle.

  



  Définition   

    

  L’opposé d’un vecteur formule, noté  formuleest le vecteur qui a  formule

même direction et  même longueur que formule, mais un  formule

sens opposé à celui de formule.







  Définition 

  

Deux vecteurs sont égaux s’ils ont même direction, même sens et même longueur.







 Tous les vecteurs représentés sont  

 égaux :

 

 

 formule



 (Car ils ont tous même direction, même  

 sens et même longueur.





  Propriété 

  

Soient quatre points A, B, C et D.

Les vecteurs sont égaux  si et seulement si  ABDC est un parallélogramme.

 formule 

         A  B



 formule  (attention à l’ordre : ABDC)

    C  D



démonstration : voir exercice



2) Opérations sur les vecteurs



  Définition : Addition de vecteurs  

  

La somme de deux vecteurs formule est le vecteur associé à la translation résultant de l‘enchaînement de la translation de vecteur formule suivie de la translation de vecteurformule.

On note ce vecteur : formule.



Exemple : Pour additionner les vecteurs formule, on les dispose bout à bout et on « relie » le tout début de la fin :





























  Propriété : Relation de Chasles 

  

    Soient trois points A, B et C.  C

Alors on a :  formule formule

 formule



    A  B  

 formule 



 



  Propriété 

  

Soient trois vecteurs formule, on a :

		formule  (on dit que l’addition des vecteurs est commutative)



		formule (on dit que formuleest élément neutre pour l’addition des vecteurs )



		formule (on dit que l’addition des vecteurs est associative)











  Propriété : Règle du parallélogramme 

  

    

      Soit ABCD un parallélogramme.  D  C

Alors : .  formule

 formule 



     A  B

 formule





démonstration : voir exercice



  Définition : Multiplication d’un vecteur par un réel  

  

Soient formule un vecteur et un réel k ≠0.

    formuleest le vecteur ayant  même direction et même longueur  que formuleet

		  de même sens  que formule si  k > 0 .  



		    de sens  contraire à formule si  k < 0 .





 formule

On a :  formuleet  formule formule







    Propriété 



Pour tous vecteurs  formule et formuleet tous réels k et k‘ :

 •  formule  • formule

  •  formule







    Propriété 



Soit un vecteurs  formule et un réels k. Alors :

formule





  Définition : Vecteurs colinéaires  

  

Deux vecteurs formulenon nuls sont colinéaires s’il existe un réel k non nul tel que :

 formule.



 (formule ont même direction )







    Propriété : Parallélisme   



Soient A, B, C et D quatre points distincts du plan. Les droites (AB) et (CD) sont parallèles 

si et seulement si  les vecteurs  formule sont colinéaires.







    Propriété : Points alignés 



 Soient A, B et C trois points distincts du plan. 

 Les points A, B et C sont alignés  si et seulement si  les vecteurs formule sont colinéaires.









2)  Coordonnées d’un vecteur



  Définition : Repère orthonormé  

  

Un repère orthonormé du plan est un triplet  où O ,  appelé origine du repère, 

est  un point du plan et formulesont deux vecteurs non colinéaires.



 ( le couple formuleest appelé base ).



		Pour tout point M ou peut écrire formule où x et y sont  UNIQUES.



		Pour tout vecteur formuleou peut écrire formule où x et y sont  UNIQUES.













  Propriété 

  

Pour tous vecteurs  formule dans un repère orthonormé formuleet

 tout réel k  :  

		formule si et seulement si  x = x’  et y = y’.



		formule a pour coordonnées  ( x + x’ , y + y’ ).



		formule.









  Propriété 

  

Soient  deux points A (xA , yA )  et B (xB , yB )  dans un repère orthonormé formule. 

Alors  ,  les coordonnées de  formulesont formule.



 ( coordonnées du 2ème point   –  coordonnées du 1er point ).









  Propriété : Critère de colinéarité  

  

Deux vecteurs  formule (non nuls) dans un repère orthonormé formulesont colinéaires si et seulement s’il existe un  réel k  (non nul) tel que :

 x = k  x’  et  y = k  y’ .  



démonstration : voir exercice



Remarque : Critère de colinéarité qui sera vu plus tard dans le programme :

 Deux vecteurs  formule(non nuls)  dans un repère orthonormé formulesont colinéaires  si et seulement si  x y’ – y x’ = 0 .

  démonstration : voir exercice















