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1) Définitions

                                                                                                                         direction
  
Un vecteur u⃗ est caractérisé par sa direction, sons sens et                                          sens

sa longueur, appelée norme de u⃗  et notée ‖u⃗‖ .                             u⃗       longueur
  
Un vecteur u⃗ peut être défini par deux points A et B, tels que 
A soit l’image de B par la translation de vecteur u⃗ . 

0⃗ appelé vecteur nul, n’a ni direction, ni sens et une longueur nulle.

L’opposé d’un vecteur u⃗ , noté  −⃗u est le vecteur qui a               u⃗
même direction et  même longueur que u⃗ , mais un                                         − u⃗
sens opposé à celui de u⃗ .

Deux vecteurs sont égaux s’ils ont même direction, même sens et même longueur.

      Tous les vecteurs représentés sont 
      égaux :
  
  

             u⃗= v⃗= A⃗B=C⃗D

  (Car ils ont tous même direction, même 
  sens et même longueur.
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     Définition

     Définition

     Définition



Soient quatre points A, B, C et D.

Les vecteurs A⃗B et C⃗D sont égaux   si et seulement si   ABDC est un parallélogramme.

                                             A⃗B  
                            A                                           B

                            C⃗D                                                 (attention à l’ordre : ABDC)
C                                              D

démonstration     : voir exercice

2) Opérations sur les vecteurs

La somme de deux vecteurs u⃗ et v⃗  est le vecteur associé à la translation résultant de 
l‘enchaînement de la translation de vecteur u⃗  suivie de la translation de vecteur v⃗ .
On note ce vecteur : u⃗ + v⃗ .

Exemple : Pour additionner les vecteurs u⃗ , v⃗ et w⃗ , on les dispose bout à bout et on « relie » 
le tout début de la fin :

Soient trois points A, B et C.                                                                            C
Alors on a :  A⃗ B+ B⃗ C= A⃗C                                   A⃗C

                                                                                                B⃗ C

                                                      A                                 B 
                                                                       A⃗ B   
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    Propriété

  Définition : Addition de vecteurs 

    Propriété : Relation de Chasles



Soient trois vecteurs u⃗ , v⃗ et w⃗ , on a :
• u⃗+ v⃗= v⃗+ u⃗                                                  (on dit que l’addition des vecteurs est commutative)

• u⃗+ 0⃗= u⃗                                             (on dit que 0⃗ est élément neutre pour l’addition des vecteurs )

• u⃗+( v⃗+ v⃗ )=(u⃗+ v⃗ )+ v⃗                                    (on dit que l’addition des vecteurs est associative)

Soit ABCD un parallélogramme.                          D                                                   C
Alors : A⃗B+ A⃗D= A⃗C .                                                     A⃗C

                                              A⃗D   

                                       A                                                    B
                                                          A⃗B

démonstration     : voir exercice

Soient u⃗  un vecteur et un réel k ≠0.
k u⃗ est le vecteur ayant  même direction et même longueur  que u⃗ et

• de même sens  que u⃗  si   k > 0 .                                                                 − 1
2

u⃗

• de sens  contraire à u⃗  si   k < 0 .
                                                                              u⃗

On a :   0 u⃗= 0⃗ et  k 0⃗= 0⃗                              2 u⃗

Pour tous vecteurs  u⃗  et v⃗ et tous réels k et k‘ :
   •  k (u⃗+ v⃗ )=k u⃗+k v⃗       • (k+k ') u⃗=k u⃗+k ' u⃗

    •  k (k ' u⃗)=(k k ') u⃗

Soit un vecteurs  u⃗  et un réels k. Alors :
k u⃗=0 ⇔ k=0 ou u⃗=0
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    Propriété

    Propriété : Règle du parallélogramme

    Propriété

  Définition : Multiplication d’un vecteur par un réel 

    Propriété



Deux vecteurs u⃗ et v⃗ non nuls sont colinéaires s’il existe un réel k non nul tel que :
         u⃗ = k v⃗ ou v⃗ = k u⃗ .

  ( u⃗ et v⃗  ont même direction )

Soient A, B, C et D quatre points distincts du plan. Les droites (AB) et (CD) sont parallèles 

si et seulement si  les vecteurs   A⃗B et C⃗D   sont colinéaires.

 Soient A, B et C trois points distincts du plan. 

 Les points A, B et C sont alignés  si et seulement si  les vecteurs A⃗B et A⃗C  sont colinéaires.

2)  Coordonnées d’un vecteur

Un repère orthonormé du plan est un triplet (O ; i⃗ ; j⃗)  où O ,  appelé origine du repère, 

est  un point du plan et i⃗ et j⃗ sont deux vecteurs non colinéaires.

 ( le couple (i⃗ ; j⃗) est appelé base ).

• Pour tout point M ou peut écrire O⃗M=x i⃗+y j⃗  où x et y sont  UNIQUES.

• Pour tout vecteur u⃗ ou peut écrire u⃗= x i⃗+ y j⃗  où x et y sont  UNIQUES.

Pour tous vecteurs  u⃗ (x , y)et v⃗ (x ' , y ')  dans un repère orthonormé (O ; i⃗ ; j⃗) et
 tout réel k  : 

• u⃗ (x , y)= v⃗ (x ' , y ')  si et seulement si    x = x’  et y = y’.
• u⃗ (x , y)+ v⃗ (x ' , y ')  a pour coordonnées  ( x + x’ , y + y’ ).
• k u⃗ (x , y ) a pour coordonnées (k x , k y) .

Seconde - Vecteurs                                                                                                             4 / 5

  Définition : Vecteurs colinéaires 

  Propriété : Parallélisme  

  Définition : Repère orthonormé 

    Propriété

  Propriété : Points alignés



Soient   deux points A (xA , yA )  et B (xB , yB )  dans un repère orthonormé (O ; i⃗ ; j⃗) . 

Alors  ,  les coordonnées de  A⃗B sont A⃗B (xB− xA , yB− yA) .

   ( coordonnées du 2ème point   –   coordonnées du 1er point ).

Deux vecteurs  u⃗ (x , y)et v⃗ (x ' , y ')  (non nuls) dans un repère orthonormé (O ; i⃗ ; j⃗) sont 
colinéaires si et seulement s’il existe un  réel k  (non nul) tel que :
                                         x = k  x’     et    y = k  y’ . 

démonstration     : voir exercice

Remarque     : Critère de colinéarité qui sera vu plus tard dans le programme :

 Deux vecteurs  u⃗ (x , y)et v⃗ (x ' , y ') (non nuls)  dans un repère orthonormé (O ; i⃗ ; j⃗) sont 
colinéaires   si et seulement si    x y’ – y x’ = 0 .
                                                                                             démonstration     : voir exercice
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    Propriété

  Propriété : Critère de colinéarité 
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1) Définitions







  Définition       direction

         

Un vecteur est caractérisé par sa direction, sons sens et  sens

sa longueur, appelée norme de formule et notée .  formule  longueur

  

Un vecteur formulepeut être défini par deux points A et B, tels que 

A soit l’image de B par la translation de vecteur formule.  



formuleappelé vecteur nul, n’a ni direction, ni sens et une longueur nulle.

  



  Définition   

    

  L’opposé d’un vecteur formule, noté  formuleest le vecteur qui a  formule

même direction et  même longueur que formule, mais un  formule

sens opposé à celui de formule.







  Définition 

  

Deux vecteurs sont égaux s’ils ont même direction, même sens et même longueur.







 Tous les vecteurs représentés sont  

 égaux :

 

 

 formule



 (Car ils ont tous même direction, même  

 sens et même longueur.





  Propriété 

  

Soient quatre points A, B, C et D.

Les vecteurs sont égaux  si et seulement si  ABDC est un parallélogramme.

 formule 

         A  B



 formule  (attention à l’ordre : ABDC)

    C  D



démonstration : voir exercice



2) Opérations sur les vecteurs



  Définition : Addition de vecteurs  

  

La somme de deux vecteurs formule est le vecteur associé à la translation résultant de l‘enchaînement de la translation de vecteur formule suivie de la translation de vecteurformule.

On note ce vecteur : formule.



Exemple : Pour additionner les vecteurs formule, on les dispose bout à bout et on « relie » le tout début de la fin :





























  Propriété : Relation de Chasles 

  

    Soient trois points A, B et C.  C

Alors on a :  formule formule

 formule



    A  B  

 formule 



 



  Propriété 

  

Soient trois vecteurs formule, on a :

		formule  (on dit que l’addition des vecteurs est commutative)



		formule (on dit que formuleest élément neutre pour l’addition des vecteurs )



		formule (on dit que l’addition des vecteurs est associative)











  Propriété : Règle du parallélogramme 

  

    

      Soit ABCD un parallélogramme.  D  C

Alors : .  formule

 formule 



     A  B

 formule





démonstration : voir exercice



  Définition : Multiplication d’un vecteur par un réel  

  

Soient formule un vecteur et un réel k ≠0.

    formuleest le vecteur ayant  même direction et même longueur  que formuleet

		  de même sens  que formule si  k > 0 .  



		    de sens  contraire à formule si  k < 0 .





 formule

On a :  formuleet  formule formule







    Propriété 



Pour tous vecteurs  formule et formuleet tous réels k et k‘ :

 •  formule  • formule

  •  formule







    Propriété 



Soit un vecteurs  formule et un réels k. Alors :

formule





  Définition : Vecteurs colinéaires  

  

Deux vecteurs formulenon nuls sont colinéaires s’il existe un réel k non nul tel que :

 formule.



 (formule ont même direction )







    Propriété : Parallélisme   



Soient A, B, C et D quatre points distincts du plan. Les droites (AB) et (CD) sont parallèles 

si et seulement si  les vecteurs  formule sont colinéaires.







    Propriété : Points alignés 



 Soient A, B et C trois points distincts du plan. 

 Les points A, B et C sont alignés  si et seulement si  les vecteurs formule sont colinéaires.









2)  Coordonnées d’un vecteur



  Définition : Repère orthonormé  

  

Un repère orthonormé du plan est un triplet  où O ,  appelé origine du repère, 

est  un point du plan et formulesont deux vecteurs non colinéaires.



 ( le couple formuleest appelé base ).



		Pour tout point M ou peut écrire formule où x et y sont  UNIQUES.



		Pour tout vecteur formuleou peut écrire formule où x et y sont  UNIQUES.













  Propriété 

  

Pour tous vecteurs  formule dans un repère orthonormé formuleet

 tout réel k  :  

		formule si et seulement si  x = x’  et y = y’.



		formule a pour coordonnées  ( x + x’ , y + y’ ).



		formule.









  Propriété 

  

Soient  deux points A (xA , yA )  et B (xB , yB )  dans un repère orthonormé formule. 

Alors  ,  les coordonnées de  formulesont formule.



 ( coordonnées du 2ème point   –  coordonnées du 1er point ).









  Propriété : Critère de colinéarité  

  

Deux vecteurs  formule (non nuls) dans un repère orthonormé formulesont colinéaires si et seulement s’il existe un  réel k  (non nul) tel que :

 x = k  x’  et  y = k  y’ .  



démonstration : voir exercice



Remarque : Critère de colinéarité qui sera vu plus tard dans le programme :

 Deux vecteurs  formule(non nuls)  dans un repère orthonormé formulesont colinéaires  si et seulement si  x y’ – y x’ = 0 .

  démonstration : voir exercice















